Copied to
clipboard

G = C62.16C32order 324 = 22·34

7th non-split extension by C62 of C32 acting via C32/C3=C3

metabelian, soluble, monomial

Aliases: C62.16C32, (C3×A4)⋊C9, (C3×C9)⋊3A4, (C6×C18)⋊3C3, C3.5(C9×A4), C3.3(C9⋊A4), (C2×C6).4He3, C3.1(C32⋊A4), (C32×A4).1C3, C221(C32⋊C9), C32.18(C3×A4), (C2×C6).23- 1+2, (C3×C3.A4)⋊1C3, (C2×C6).4(C3×C9), SmallGroup(324,52)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C62.16C32
C1C22C2×C6C62C32×A4 — C62.16C32
C22C2×C6 — C62.16C32
C1C32C3×C9

Generators and relations for C62.16C32
 G = < a,b,c,d | a6=b6=c3=1, d3=a2, ab=ba, cac-1=ab3, ad=da, cbc-1=a3b4, bd=db, dcd-1=b2c >

Subgroups: 205 in 56 conjugacy classes, 21 normal (12 characteristic)
C1, C2, C3, C3, C3, C22, C6, C9, C32, C32, A4, C2×C6, C2×C6, C18, C3×C6, C3×C9, C3×C9, C33, C3.A4, C2×C18, C3×A4, C3×A4, C62, C3×C18, C32⋊C9, C3×C3.A4, C6×C18, C32×A4, C62.16C32
Quotients: C1, C3, C9, C32, A4, C3×C9, He3, 3- 1+2, C3×A4, C32⋊C9, C9×A4, C9⋊A4, C32⋊A4, C62.16C32

Smallest permutation representation of C62.16C32
On 108 points
Generators in S108
(1 54 4 48 7 51)(2 46 5 49 8 52)(3 47 6 50 9 53)(10 29 13 32 16 35)(11 30 14 33 17 36)(12 31 15 34 18 28)(19 56 22 59 25 62)(20 57 23 60 26 63)(21 58 24 61 27 55)(37 76 40 79 43 73)(38 77 41 80 44 74)(39 78 42 81 45 75)(64 91 67 94 70 97)(65 92 68 95 71 98)(66 93 69 96 72 99)(82 107 85 101 88 104)(83 108 86 102 89 105)(84 100 87 103 90 106)
(1 42 63 12 90 66)(2 43 55 13 82 67)(3 44 56 14 83 68)(4 45 57 15 84 69)(5 37 58 16 85 70)(6 38 59 17 86 71)(7 39 60 18 87 72)(8 40 61 10 88 64)(9 41 62 11 89 65)(19 30 105 92 53 80)(20 31 106 93 54 81)(21 32 107 94 46 73)(22 33 108 95 47 74)(23 34 100 96 48 75)(24 35 101 97 49 76)(25 36 102 98 50 77)(26 28 103 99 51 78)(27 29 104 91 52 79)
(1 4 7)(2 58 88)(3 86 62)(5 61 82)(6 89 56)(8 55 85)(9 83 59)(10 97 104)(11 77 19)(12 28 54)(13 91 107)(14 80 22)(15 31 48)(16 94 101)(17 74 25)(18 34 51)(20 66 99)(21 43 29)(23 69 93)(24 37 32)(26 72 96)(27 40 35)(30 108 68)(33 102 71)(36 105 65)(38 95 50)(39 75 103)(41 98 53)(42 78 106)(44 92 47)(45 81 100)(46 67 79)(49 70 73)(52 64 76)(57 60 63)(84 87 90)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,54,4,48,7,51)(2,46,5,49,8,52)(3,47,6,50,9,53)(10,29,13,32,16,35)(11,30,14,33,17,36)(12,31,15,34,18,28)(19,56,22,59,25,62)(20,57,23,60,26,63)(21,58,24,61,27,55)(37,76,40,79,43,73)(38,77,41,80,44,74)(39,78,42,81,45,75)(64,91,67,94,70,97)(65,92,68,95,71,98)(66,93,69,96,72,99)(82,107,85,101,88,104)(83,108,86,102,89,105)(84,100,87,103,90,106), (1,42,63,12,90,66)(2,43,55,13,82,67)(3,44,56,14,83,68)(4,45,57,15,84,69)(5,37,58,16,85,70)(6,38,59,17,86,71)(7,39,60,18,87,72)(8,40,61,10,88,64)(9,41,62,11,89,65)(19,30,105,92,53,80)(20,31,106,93,54,81)(21,32,107,94,46,73)(22,33,108,95,47,74)(23,34,100,96,48,75)(24,35,101,97,49,76)(25,36,102,98,50,77)(26,28,103,99,51,78)(27,29,104,91,52,79), (1,4,7)(2,58,88)(3,86,62)(5,61,82)(6,89,56)(8,55,85)(9,83,59)(10,97,104)(11,77,19)(12,28,54)(13,91,107)(14,80,22)(15,31,48)(16,94,101)(17,74,25)(18,34,51)(20,66,99)(21,43,29)(23,69,93)(24,37,32)(26,72,96)(27,40,35)(30,108,68)(33,102,71)(36,105,65)(38,95,50)(39,75,103)(41,98,53)(42,78,106)(44,92,47)(45,81,100)(46,67,79)(49,70,73)(52,64,76)(57,60,63)(84,87,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,54,4,48,7,51)(2,46,5,49,8,52)(3,47,6,50,9,53)(10,29,13,32,16,35)(11,30,14,33,17,36)(12,31,15,34,18,28)(19,56,22,59,25,62)(20,57,23,60,26,63)(21,58,24,61,27,55)(37,76,40,79,43,73)(38,77,41,80,44,74)(39,78,42,81,45,75)(64,91,67,94,70,97)(65,92,68,95,71,98)(66,93,69,96,72,99)(82,107,85,101,88,104)(83,108,86,102,89,105)(84,100,87,103,90,106), (1,42,63,12,90,66)(2,43,55,13,82,67)(3,44,56,14,83,68)(4,45,57,15,84,69)(5,37,58,16,85,70)(6,38,59,17,86,71)(7,39,60,18,87,72)(8,40,61,10,88,64)(9,41,62,11,89,65)(19,30,105,92,53,80)(20,31,106,93,54,81)(21,32,107,94,46,73)(22,33,108,95,47,74)(23,34,100,96,48,75)(24,35,101,97,49,76)(25,36,102,98,50,77)(26,28,103,99,51,78)(27,29,104,91,52,79), (1,4,7)(2,58,88)(3,86,62)(5,61,82)(6,89,56)(8,55,85)(9,83,59)(10,97,104)(11,77,19)(12,28,54)(13,91,107)(14,80,22)(15,31,48)(16,94,101)(17,74,25)(18,34,51)(20,66,99)(21,43,29)(23,69,93)(24,37,32)(26,72,96)(27,40,35)(30,108,68)(33,102,71)(36,105,65)(38,95,50)(39,75,103)(41,98,53)(42,78,106)(44,92,47)(45,81,100)(46,67,79)(49,70,73)(52,64,76)(57,60,63)(84,87,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,54,4,48,7,51),(2,46,5,49,8,52),(3,47,6,50,9,53),(10,29,13,32,16,35),(11,30,14,33,17,36),(12,31,15,34,18,28),(19,56,22,59,25,62),(20,57,23,60,26,63),(21,58,24,61,27,55),(37,76,40,79,43,73),(38,77,41,80,44,74),(39,78,42,81,45,75),(64,91,67,94,70,97),(65,92,68,95,71,98),(66,93,69,96,72,99),(82,107,85,101,88,104),(83,108,86,102,89,105),(84,100,87,103,90,106)], [(1,42,63,12,90,66),(2,43,55,13,82,67),(3,44,56,14,83,68),(4,45,57,15,84,69),(5,37,58,16,85,70),(6,38,59,17,86,71),(7,39,60,18,87,72),(8,40,61,10,88,64),(9,41,62,11,89,65),(19,30,105,92,53,80),(20,31,106,93,54,81),(21,32,107,94,46,73),(22,33,108,95,47,74),(23,34,100,96,48,75),(24,35,101,97,49,76),(25,36,102,98,50,77),(26,28,103,99,51,78),(27,29,104,91,52,79)], [(1,4,7),(2,58,88),(3,86,62),(5,61,82),(6,89,56),(8,55,85),(9,83,59),(10,97,104),(11,77,19),(12,28,54),(13,91,107),(14,80,22),(15,31,48),(16,94,101),(17,74,25),(18,34,51),(20,66,99),(21,43,29),(23,69,93),(24,37,32),(26,72,96),(27,40,35),(30,108,68),(33,102,71),(36,105,65),(38,95,50),(39,75,103),(41,98,53),(42,78,106),(44,92,47),(45,81,100),(46,67,79),(49,70,73),(52,64,76),(57,60,63),(84,87,90)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108)]])

60 conjugacy classes

class 1  2 3A···3H3I···3N6A···6H9A···9F9G···9R18A···18R
order123···33···36···69···99···918···18
size131···112···123···33···312···123···3

60 irreducible representations

dim111113333333
type++
imageC1C3C3C3C9A4He33- 1+2C3×A4C9×A4C9⋊A4C32⋊A4
kernelC62.16C32C3×C3.A4C6×C18C32×A4C3×A4C3×C9C2×C6C2×C6C32C3C3C3
# reps14221812426126

Matrix representation of C62.16C32 in GL4(𝔽19) generated by

11000
0007
0121212
0700
,
1000
00110
01100
0888
,
1000
01100
00011
0888
,
9000
07156
09113
010411
G:=sub<GL(4,GF(19))| [11,0,0,0,0,0,12,7,0,0,12,0,0,7,12,0],[1,0,0,0,0,0,11,8,0,11,0,8,0,0,0,8],[1,0,0,0,0,11,0,8,0,0,0,8,0,0,11,8],[9,0,0,0,0,7,9,10,0,15,1,4,0,6,13,11] >;

C62.16C32 in GAP, Magma, Sage, TeX

C_6^2._{16}C_3^2
% in TeX

G:=Group("C6^2.16C3^2");
// GroupNames label

G:=SmallGroup(324,52);
// by ID

G=gap.SmallGroup(324,52);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,361,43,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=c^3=1,d^3=a^2,a*b=b*a,c*a*c^-1=a*b^3,a*d=d*a,c*b*c^-1=a^3*b^4,b*d=d*b,d*c*d^-1=b^2*c>;
// generators/relations

׿
×
𝔽